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ABSTRACT

Quantization index modulation (QIM) methods, a class of digital watermarking and information embedding methods,
achieve very e�cient trade-o�s among the amount of embedded information (rate), the amount of embedding-induced
distortion to the host signal, and the robustness to intentional and unintentional attacks. For example, we show
that against independent additive Gaussian attacks, which are good models for at least some types of uninformed
and unintentional attacks, QIM methods exist that achieve the best possible rate-distortion-robustness trade-o�s
(i.e., capacity) asymptotically at high rates and achieve performance within a few dB of capacity at all �nite rates.
Furthermore, low-complexity realizations of QIM methods, such as so-called dither modulation, have also been shown
to achieve favorable rate-distortion-robustness trade-o�s.

We further develop preprocessing and postprocessing techniques that enable QIM to fully achieve capacity, not
only against Gaussian attacks but also against other types of attacks as well. One practical postprocessing technique
we develop we refer to as distortion compensation. Distortion compensation has the property that when suitably
optimized it is su�cient for use in conjunction with QIM to achieve capacity against Gaussian attacks and against
square-error distortion-constrained attacks. More generally, we present the results of a comparative information the-
oretic analysis of the fundamental performance limits of QIM, distortion-compensated QIM, and other watermarking
methods and demonstrate practically achievable gains with experimental results.

Keywords: digital watermarking, dither modulation, quantization index modulation, distortion compensation,
capacity, information embedding, data hiding, steganography

1. INTRODUCTION

Copyright noti�cation and enforcement, authentication, and covert communication | these are just a few of the
emerging multimedia security applications for digital watermarking and information embedding methods,1,2 methods
for embedding one signal, an \embedded signal" or \watermark", within another signal, a \host signal". The
embedding must be done such that the embedded signal causes no serious degradation to its host, i.e., the embedding-
induced distortion must be small. At the same time, the embedding must be robust to common degradations to the
composite host and watermark signal, which in some applications result from deliberate attacks. Ideally, whenever
the host signal survives these degradations, the watermark also survives. Finally, for given distortion and robustness
levels, one would like to embed as much data as possible in a given host signal, or equivalently, one would like to
maximize the embedding rate.

Thus, one can evaluate a digital watermarking method or class of methods by its achievable rate-distortion-
robustness trade-o�s, and quantization index modulation (QIM) methods3{5 are one class of methods that have been
shown to achieve very favorable rate-distortion-robustness trade-o�s. For example, due to their host-interference
rejection properties, they perform provably better than additive spread spectrum methods6{8 against no-key, square-
error distortion-constrained attacks.5 Furthermore, these methods also outperform other host-interference rejecting
methods such as quantization-and-perturbation,9 which may be viewed as a form of generalized low-bit modulation.4
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Figure 1. Information-embedding problem models. A message m is embedded in the host signal vector x using
some embedding function s(x;m). Equivalently, we may view the host signal as the state of a super-channel, with
a host-dependent distortion signal e as the input. The decoder extracts an estimate m̂ of m from the noisy channel
output y.

In fact, as we show in this paper, with the proper preprocessing and postprocessing, QIM methods exist that
achieve the best possible rate-distortion-robustness performance, i.e., capacity, against any �xed attack. We also
show that distortion-compensated QIM3,4 methods, a special subclass of postprocessed QIM methods, exist that
achieve capacity against both additive Gaussian noise attacks and active, square-error distortion-constrained attacks
on private-key systems. Finally, we present experimental results demonstrating the achievable performance of prac-
tical, low complexity, distortion-compensated QIM methods called distortion-compensated spread-transform dither
modulation.

2. PROBLEM MODEL

The two equivalent problem models of Fig. 1 capture the fundamental features of most digital watermarking ap-
plications from two di�erent perspectives. The top model represents the view that digital watermarking is the
simultaneous communication or multiplexing of two signals, a watermark m and a host signal x, subject to a distor-
tion constraint between the host signal and composite signal s. The second view, represented by the bottom model
of Fig. 1, is that digital watermarking is communication of a distortion signal e over a channel with a state variable
known at the encoder, where the state variable or side information is the host signal x.� We expound on these views
below and show that the two models are mathematically equivalent. However, depending on the context, one model
may be more convenient than the other, so it is helpful to keep both in mind.

We wish to embed some digital information or watermark m in some host signal vector x 2 <N . This host
signal could be a vector of pixel values or Discrete Cosine Transform (DCT) coe�cients from an image, for example.
Alternatively, the host signal could be a vector of samples or transform coe�cients, such as Discrete Fourier Transform
(DFT) or linear prediction coding coe�cients, from an audio or speech signal. We wish to embed at a rate of Rm

bits per dimension (bits per host signal sample) so we can think of m as an integer, where

m 2
�
1; 2; : : : ; 2NRm

	
: (1)

�Cox, et al., have also recognized that one can view watermarking in this way.10
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An embedding function, denoted s(x;m) in Fig. 1, maps the host signal x and embedded information m to
a composite signal s 2 <N . The embedding should not unacceptably degrade the host signal, so we have some
distortion measure D(s; x) between the composite and host signals. For example, one might choose the square-error
distortion measure

D(s; x) =
1

N
ks� xk2: (2)

In some cases we may measure the expected distortion Ds = E[D(s; x)]. Alternatively, we can write the embedding
function s(x;m) as the sum of the host signal x and a host-dependent distortion signal e(x;m),

s(x;m) = x+ e(x;m);

simply by de�ning the distortion signal to be e(x;m)
�
= s(x;m)� x. Thus, as shown in the bottom portion of Fig. 1,

one can view e as the input to a super-channel that consists of the cascade of an adder and the true channel, which
we describe below. As stated above, the host signal x is a state of this super-channel that is known at the encoder.
The measure of distortion D(s; x) between the composite and host signals maps onto a host-dependent measure of
the size P (e; x) = D(x+ e; x) of the distortion signal e. For example, square-error distortion (2) equals the power of
e since ks� xk2 = kek2.

The composite signal s is subjected to various common signal processing manipulations such as lossy compression,
addition of random noise, and resampling, as well as deliberate attempts to remove the embedded information.
These manipulations occur in some channel, which produces an output signal y 2 <N according to some conditional
probability density function (pdf) pyjs(yjs). (In this paper we may use the alternative notation p(yjs) when there is
no risk of confusion between random variables and sample values.) For convenience, we de�ne a perturbation vector
n 2 <N to be the di�erence y� s. Also, in this paper we consider memoryless channels, which have pdfs of the form

pyjs(yjs) =

NY

i=1

pyjs(yijsi);

where yi and si are the i-th components of y and s, respectively. Generalization of the results in this paper to
blockwise, memoryless channels, where the yi and si are subvectors rather than scalars, are straightforward,3,4

and in previous work we have considered deterministic channels.5 Similarly, although in this paper we con�ne
our attention to the case of independent and identically distributed (iid) host signals, where px(x) =

QN
i=1 px(xi),

generalization of our results to the case of blockwise iid host signals is also straightforward.3,4

The decoder forms an estimate m̂ of the embedded information m based on the channel output y. The robustness
of the overall embedding-decoding method is characterized by the maximum noisiness of the channel, as measured
by the variance �2n of the perturbations for example, for which one can decode the watermark with small probability
of error. (More generally, as is done in other related work,3{5 one can characterize the robustness in terms of the
class of perturbation vectors over which the estimate m̂ is reliable, either in a probabilistic sense or in a deterministic
sense.) Speci�c channels of interest in this paper include (1) additive Gaussian noise channels and (2) arbitrary,
square-error distortion-constrained attack channels, where the attacker can choose any channel law pyjs(yjs) subject
to the constraint E[(y � s)2] � �2n.

One desires the embedding system to have high rate, low distortion, and high robustness, but in general these
three goals tend to conict. Thus, the performance of an information embedding system is characterized in terms of
its achievable rate-distortion-robustness trade-o�s.

3. DISTORTION-COMPENSATED QUANTIZATION INDEX MODULATION

In this section we review quantization index modulation (QIM)3{5 and introduce a type of postprocessing called
distortion compensation. We focus our discussion on a particular implementation of QIM called spread-transform
dither modulation (STDM) with uniform, scalar quantization.

\Spread-transform" refers to �rst transforming the host signal vector x by projecting it onto a collection of
orthogonal (usually pseudorandom) projection vectors v1; : : : ;vN=LSTDM to obtain a set of transformed host signal
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Figure 2. Decoder decision regions for distortion-compensated spread-transform dither modulation. Host signal
projections are quantized using one of two quantizers, and some of the quantization error is added back (compensated).

components ~x1; : : : ; ~xN=LSTDM . When embedding information, we modify only these N=LSTDM coe�cients to obtain
transformed composite signal components ~s1; : : : ;~sN=LSTDM and set

s = x
? +

N=LX

i=1

~sivi;

where x
? is the component of x orthogonal to the subspace spanned by v1; : : : ;vN=LSTDM . We call LSTDM the

spreading length.

QIM embedding methods embed information in the spread-transformed host signal components by quantizing
them with a quantizer chosen from an ensemble of quantizers. The watermark m determines the choice of quantizer.
For example, if one wishes embed one bit (m = 1 or m = 2) in one host signal component ~x , then ~sQIM = q(~x ;m),
where q(�; 1) and q(�; 2) are two di�erent quantizers. In Fig. 2 these quantizers are uniform, scalar quantizers with
step size �=�. In this case both the reconstruction points, which are shown as � points and � points in Fig. 2,
and the quantization cells, which are not shown in Fig. 2, of the two quantizers are shifted versions of each other so
the quantizers are dithered quantizers, and we refer to this type of QIM as dither modulation.3{5 In general QIM
quantizer ensembles need not be dithered quantizers, scalar quantizers, nor uniform quantizers, and the host signal
need not be spread-transformed �rst.3{5

One way to decode QIM embedded data is to use minimum distance decoding, which corresponds to �nding the
quantizer reconstruction point that is closest in distance to the channel output and setting m̂ = i if this reconstruction
point belongs to the i-th quantizer in the ensemble. In the case discussed above, where one bit is embedded in one
host signal sample, the decision region boundaries of the minimum distance decoder are shown in Fig. 2 as dashed
lines. If ~y falls within a decision region containing a � point, then m̂ = 1. Otherwise, m̂ = 2. Therefore, the
distance between the reconstruction points and their respective decision region boundaries determines the amount
of interference that can be tolerated before decoding errors occur. Signi�cantly, and in contrast to additive spread-
spectrum methods, the host signal ~x does not interfere with decoding since ~x may a�ect which � point (m = 1), or
which � point (m = 2) is selected during encoding, but ~x does not cause ~y to move from a � point towards a �
point or vice-versa. Thus, we say that QIM methods are host-interference rejecting methods. (This host-interference
rejection property leads to a so-called \signal-to-noise ratio (SNR) advantage", as we discuss in other work.3,4,11 )

One can increase this distance by decreasing �. However, since �=� is the quantizer step size, decreasing � also
increases the quantization error, which is the QIM embedding-induced distortion. Therefore, to keep the embedding-
induced distortion �xed as one decreases �, one must compensate for this additional quantization error. One way to
do so, which we call distortion-compensation, is to add part of the quantization error to the reconstruction point to
form the composite signal. Speci�cally, if the embedding function is

~sDC�QIM = q(~x ;m;�=�) + (1� �)[~x � q(~x ;m;�=�)]; (3)

where q(�;m;�=�) denotes them-th quantizer with step size �=�, then the square-error embedding-induced distortion
(2) is independent of � for � between 0 and 1.3,4 If the quantizers are dithered quantizers, as they are in Fig. 2,
then we call this type of information embedding distortion-compensated dither modulation. The generalization of
these methods, where the quantizers need not be dithered quantizers, is called distortion-compensated QIM.3,4 The
resulting composite signal is shown in Fig. 2, where the deection from the quantizer reconstruction point to the

c2000 SPIE. 51



[From Proc. of SPIE: Security and Watermarking of Multimedia Contents II, vol. 3971.]

composite signal point ~s is due to the second term in (3). Thus, this deection is a source of interference, which we
refer to as distortion-compensation interference, during decoding, along with the channel perturbation interference
~n. Since the embedding-induced distortion and embedding rate in (3) are independent of �, we choose � to maximize
the robustness. For example, one optimization criterion is to choose � to maximize a SNR at the decision device,

SNR(�) =
d21=�

2

(1� �)2Ds

�2
+ �2n

=
d21

(1� �)2Ds + �2�2n
;

where, in the case of Fig. 2, this SNR is de�ned as the ratio between the squared length of the decoder decision
regions and the total interference energy from both distortion-compensation interference and channel interference.
Here, d1 = �=2 is the decoder decision region length when � = 1 (no distortion compensation). It is straightforward
to verify that the optimal scaling parameter � that maximizes this SNR is

�SNR =
DNR

DNR + 1
; (4)

where DNR is the (embedding-induced) distortion-to-noise ratio Ds=�
2
n. As discussed in Sec. 4, such a choice of �

also maximizes the information-embedding capacity in the case when the host signal x is Gaussian and the channel is
an additive Gaussian noise channel and in high-�delity cases even if the host signal is non-Gaussian and the channel
represents arbitrary attacks.

4. INFORMATION-THEORETIC PERSPECTIVES

In this section we consider from an information theoretic perspective the best possible rate-distortion-robustness
performance that one could hope to achieve with any information embedding system. Our analysis leads to in-
sights about some properties and characteristics of good information embedding methods, i.e., methods that achieve
performance close to the information-theoretic limits. In particular, a canonical structure emerges for information
embedding that consists of (1) preprocessing of the host signal, (2) QIM embedding, and (3) postprocessing of the
quantized host signal to form the composite signal. One incurs no loss of optimality by restricting one's attention to
this simple structure. Also, only distortion compensation postprocessing is required in the following three cases: (1)
an additive Gaussian noise channel and a Gaussian host signal, (2) square-error distortion-constrained attacks and
a Gaussian host signal, and (3) square-error distortion-constrained attacks, a non-Gaussian host signal, and asymp-
totically small embedding-induced distortion Ds and attacker's distortion �2n (i.e., high �delity case). We emphasize
that in this section we consider QIM and distortion-compensated QIM in their most general senses, where the quan-
tizers are not necessarily dithered quantizers, uniform quantizers, or scalar quantizers. In fact, capacity-achieving
performance is generally achievable only asymptotically with long signal lengths N .

The bottom model of Fig. 1, the one which models information embedding problems as communication with
state information known at the encoder, is the most convenient one for this information-theoretic analysis. In non-
watermarking contexts Gel'fand and Pinsker12 have determined the capacity of such a channel in the case when the
encoder sees the entire iid state vector x before choosing the channel input e. In particular, the capacity is

C = max
p
u;ejx(u;ejx)

I(u; y)� I(u; x); (5)

where I(�; �) denotes mutual information and u is an auxiliary random variable. In the case of watermarking, the
maximization (5) is subject to a distortion constraint E[e2] � Ds.

4.1. Optimality of preprocessed and postprocessed QIM

In this section we show that one can achieve the capacity (5) by a type of \hidden" QIM, i.e., QIM that occurs in
a domain represented by the auxiliary random variable u. One moves into and out of this domain with pre- and
post-quantization processing.

Our discussion here is basically a summary of Gel'fand and Pinsker's capacity-achievability proof,12 with added
interpretation in terms of quantization (source coding). Fig. 3 shows an ensemble of 2NRm quantizers, where Rm =
I(u; y) � I(u; x) � 2�, where each source codeword (quantizer reconstruction vector) u is randomly drawn from the
iid distribution pu(u), which is the marginal distribution corresponding to the host signal distribution px(x) and the
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Figure 3. \Hidden" Quantization Index Modulation. QIM in the \u-domain" can achieve capacity. Preprocessing
and postprocessing is used to move into and out of this domain.

maximizing conditional distribution pu;ejx (u; ejx) from (5). (Although the source codebooks are therefore random,

both the encoder and decoder, of course, know the codebooks.) Each codebook contains 2N [I(u;x)+�] codewords so
there are 2N [I(u;y)��] codewords total.

QIM embedding in this u-domain corresponds to �nding a vector u0 in the m-th quantizer's codebook that is
jointly distortion-typical with x and generating e(u0; x) = [e(u0;1; x1) � � � e(u0;N ; xN )]

T . (From convexity properties
of mutual information, one can deduce that the maximizing distribution in (5) always has the property that e

is a deterministic function of (u; x).12 ) By distortion-typical, we mean that u0 and x are jointly typical and
ke(u0; x)k

2 � N(Ds + �), i.e., the function e2(u; x) is the distortion function in the u-domain. Since the m-th
quantizer's codebook contains more than 2NI(u;x) codewords, the probability that there is no u0 that is jointly
distortion-typical with x is small. (This is one of the main ideas behind the rate-distortion theorem.13 ) Thus,
the selection of a codeword from the m-th quantizer is the quantization part of QIM, and the generation of e, and
therefore s = x+ e, from the codeword u0 and x is the post-quantization processing.

The decoder �nds a u that is jointly typical with the channel output y and declares m̂ = i if this u is in the i-th
quantizer's codebook. Because the total number of codewords u is less than 2NI(u;y), the probability that a u other
than u0 is jointly typical with y is small. Also, the probability that y is jointly typical with u0 is close to 1. (These
are two of the main ideas behind the classical channel coding theorem.13 ) Thus, the probability of error Pr[m̂ 6= m]
is small, and we can indeed achieve the capacity (5) with QIM in the u-domain.

The remaining challenge, therefore, is to determine the right preprocessing and postprocessing given a particular
channel (attack) pyjs(yjs). As mentioned above, for a number of important cases, it turns out that the only processing
required is post-quantization distortion-compensation. We discuss these cases in the next section.

4.2. Optimality of distortion-compensated QIM

In this section we show that distortion-compensated QIM (DC-QIM) can achieve capacity whenever the maximizing
distribution pu;ejx (u; ejx) in (5) is of a form such that

u = e + �x : (6)

This condition is satis�ed in at least three important cases: (1) the case of a Gaussian host signal and an additive
Gaussian noise channel3,4; (2) the case of a Gaussian host signal and arbitraryy square-error distortion-constrained

yIn each of the arbitrary attack cases considered in this section, we assume that the attacker knows the codebook distribution

pu(u), but not the codebook. Since both the encoder and decoder do know the codebook, these cases are private-key scenarios.
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attacks14; and (3) the case of arbitrary square-error distortion-constrained attacks, a zero-mean, �nite variance host
signal with bounded and continuous pdf, and asymptotically small embedding-induced distortion Ds and attacker's
distortion �2n.

14 The values of �, which are the information-theoretically optimal distortion compensation parameters
in (3), in these three cases are, respectively,

�1 =
DNR

DNR + 1
;

�2 =
DNR

DNR + �
; � =

SNRx +DNR

SNRx +DNR � 1
;

�3 =
DNR

DNR + 1

where SNRx = �2x=�
2
n is the ratio between the host signal variance and the attacker's distortion and, thus, is a kind

of host \signal-to-noise ratio". We see that the SNR-maximizing � in (4) is also capacity-achieving in the �rst and
third cases.

To see that DC-QIM can achieve capacity when the maximizing pdf in (5) satis�es (6), we show that one can
construct an ensemble of random DC-QIM codebooks that satisfy (6). We begin by writing the generalized version
of (3):

s(x;m) = q(x;m;�=�) + (1� �)[x� q(x;m;�=�)]; (7)

where q(�;m;�=�) is the m-th quantizer, which is possibly a vector, non-uniform, or non-dithered quantizer, in the
QIM ensemble. The parameter �=� is some measure of scale, for example, the distance between the �rst and second
reconstruction points, and thus represents a generalization of its meaning (quantizer step size) in Sec. 3 to reect the
possibly vector, non-uniform nature of the quantizers. Next, we observe that quantizing x is equivalent to quantizing
�x with a scaled version of the quantizer and scaling back, i.e.,

q(x;m;�=�) =
1

�
q(�x;m;�): (8)

This identity simply represents a change of units to \units of 1=�" before quantization followed by a change back to
\normal" units after quantization. For example, if � = 1=1000, instead of quantizing x volts we quantize �x kilovolts
(using the same quantizer, but relabeling the reconstruction points in kilovolts) and convert kilovolts back to volts
by multiplying by 1=�. Then, rearranging terms in (7) and substituting (8) into the result, we obtain

s(x;m) = q(x;m;�=�) + (1� �)[x� q(x;m;�=�)]

= �q(x;m;�=�) + (1� �)x

= q(�x;m;�) + (1� �)x: (9)

We construct our random DC-QIM codebooks by choosing the codewords of q(�;m;�) from the iid distribution
pu(u), the one corresponding to (6). (Equivalently, we choose the codewords of q(�;m;�=�) in (7) from the distri-
bution of u=�, i.e., the iid distribution �pu(�u).) Our quantizers q(�;m;�) choose a codeword u0 that is jointly
distortion-typical with �x. The decoder looks for a codeword in all of the codebooks that is jointly typical with the
channel output. Then, following the achievability argument of Sec. 4.1, we can achieve a rate I(u; y)� I(u; x). From
(9), we see that

s(x;m) = x+ [q(�x;m;�) � �x] = x+ (u0 � �x):

Since s(x;m) = x+ e, we see that e = u0��x. Thus, if the maximizing distribution in (5) satis�es (6), our DC-QIM
codebooks can also have this distribution and, hence, achieve capacity (5).

5. GAUSSIAN CASE

We now focus our attention on the case of a Gaussian host signal and an additive Gaussian noise channel. When
both the host signal and channel noise are white, the capacity (5) is15

CGauss =
1

2
log2(1 + DNR); (10)

No-key scenarios have been considered using alternative analysis methods.3,5
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Host Signal Bandwidth Capacity

Analog FM 200 kHz 66.4 kb/s/dB
Analog AM 30 kHz 10.0 kb/s/dB

Audio 20 kHz 6.6 kb/s/dB
Telephone voice 3 kHz 1.0 kb/s/dB

Table 1. Information-embedding capacities for transmission over additive Gaussian noise channels for various types
of host signals. Capacities are in terms of achievable embedded rate per dB drop in received host signal quality.

In the case of blockwise-iid host signals and channel noise, where we allow some correlation between host signal
samples within blocks and between noise samples within blocks, the expression (10) also gives the capacity,4 except
in this case the embedding-induced distortion measure is a weighted square-error distortion measure, where the
weights are chosen to force the embedding distortion signal e to be \hidden" by the channel noise n. In particular,
very little distortion is allowed in components where the channel noise is small and relatively more distortion is
allowed in components where the channel noise is large.

5.1. Capacities of multimedia host signals

Because the capacity expression (10) applies to arbitrary host and noise covariance matrices, it is quite relevant to
many multimedia information embedding applications, especially those where one faces unintentional attacks. For
example, these capacities do not depend on the power spectrum of the host signal and thus these results apply to
audio, video, image, speech, analog FM, analog AM, and coded digital signals, to the extent that these signals can
be modeled as Gaussian. Also, the additive Gaussian noise with arbitrary covariance model may be applicable to
lossy compression, printing and scanning noise, and transmission noise. Furthermore, when considering the amount
of embedding-induced distortion, in many applications one is most concerned with the quality of the received host
signal, i.e., the channel output, rather than the quality of the composite signal. For example, in many authentication
applications, the document carrying the authentication signal may be transmitted across some channel to the intended
user. In these cases one can conveniently express the achievable embedded rate per unit of host signal bandwidth
and per unit of received host signal degradation, as we show in this section.

One can view the DNR as the amount by which one would have to amplify the noise to create a noise signal with
the same statistics as the embedding-induced distortion signal. Thus, if one views the received channel output as a
noise-corrupted version of the host signal, then the e�ect of the embedding is to create an additional noise source
DNR times as strong as the channel noise, and therefore, the received signal quality drops by a factor of (1 +DNR)
or

10 log10(1 + DNR) dB: (11)

Since the capacity in bits per host signal sample is given by (10), and there are two independent host signal samples
per second for every Hertz of host signal bandwidth, the capacity in bits per second per Hertz is

C = log2(1 + DNR) b/s/Hz: (12)

Taking the ratio between (12) and (11), we see that the \value" in embedded rate of each dB drop in received host
signal quality is

C =
log2(1 + DNR)

10 log10(1 + DNR)
=

1

10
log2 10 � 0:3322 b/s/Hz/dB (13)

Thus, the available embedded digital rate in bits per second depends only on the bandwidth of the host signal and
the tolerable degradation in received host signal quality. Information-embedding capacities for several types of host
signals are shown in Table 1.

5.2. Gaps to capacity

Rather remarkably, the capacity (10) is independent of host signal statistics (For example, �2x does not appear in
(10).), implying that an in�nite energy host signal causes no decrease in capacity in the Gaussian case and that
one can do just as well when the host signal is not known at the decoder as when the host signal is known at the
decoder. This principle suggests that optimal and near-optimal digital watermarking methods have the type of host-
signal interference rejection capability mentioned earlier in Sec. 3. Because QIM methods (even without distortion
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Figure 4. Gap between spread-transform QIM and Gaussian capacity. The spreading length is restricted to be
greater than or equal to 1. The maximum gap is a factor of e, or about 4:3 dB.
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compensation) possess such a capability, one can show3 that there exist near capacity-achieving QIM methods, as
illustrated in Fig. 4, which shows an upper bound on the \gap" between QIM and capacity.3 This gap, which arises
when � = 1 instead of its optimal value (4), is the additional amount of DNR that the best possible QIM system
needs to achieve the same rate as a capacity-achieving system. This gap is at most a factor of e � 4:3 dB at any
�nite rate and asymptotically approaches 0 dB at high rates. The gap in terms of (1+DNR), which as we discussed
in Sec. 5.1 is more relevant when one cares about received host signal quality, is shown in Fig. 5. Of course, even at
all �nite rates both of these gaps can be eliminated with distortion compensation, as discussed in Sec. 4.

In contrast, spread spectrum methods do not reject host signal interference. Thus, the achievable rate of a
spread spectrum method is the Gaussian channel capacity, treating both x and n as interference sources. As is
well-known,3,16 when both x and n are white, this capacity is

Css =
1

2
log2

�
1 +

Ds

�2
x
+ �2

n

�
=

1

2
log2

�
1 +

DNR

SNRx + 1

�
; (14)

where SNRx = �2x=�
2
n is the host signal-to-noise ratio. (This rate is also the capacity when n is non-Gaussian, but

still independent of s, and a correlation detector is used for decoding.17 ) By comparing (14) to (10) we see that the
gap (in terms of DNR) to capacity of spread-spectrum is SNRx +1. Typically, SNRx is very large since the channel
noise is not supposed to degrade signal quality too much. Thus, in these cases the gap to capacity of spread-spectrum
is much larger than the gap to capacity of QIM.

6. SIMULATION RESULTS

Having established the existence of capacity-achieving and near capacity-achieving embedding and decoding methods
within the distortion-compensated QIM and regular QIM classes, respectively, we now present simulation results
demonstrating practically achievable performance for low-complexity dither modulation implementations employing
uniform, scalar quantization and practical error correction codes.

It can be shown fairly easily3 that for additive white Gaussian noise (AWGN) channels and Rm < 1, the bit-error
probability Pb of uncoded spread-transform dither modulation (STDM) with uniform, scalar quantization is upper
bounded by

Pb � 2Q

 r
3

4
DNRnorm

!
; (15)

where DNRnorm is the rate-normalized distortion-to-noise ratio

DNRnorm
�
=

DNR

Rm
: (16)

For example, one can achieve a bit-error probability of about 10�6 at a DNRnorm of 15 dB. Thus, no matter how noisy
the AWGN channel, one can reliably embed using uncoded STDM by choosing su�ciently low rates. In particular,
one needs to choose a rate satisfying

Rm �
DNR

DNRnorm

;

where DNRnorm is the minimum DNRnorm necessary in (15) for a given Pb and DNR is determined by channel
conditions and the embedding-induced distortion.

One can improve performance signi�cantly using error correction coding and distortion compensation. In fact,
from the capacity expression (10) for the case of white, Gaussian noise, we see that reliable information embedding
is possible if

Rm � C =
1

2
log2(1 + DNR)

or, equivalently,
DNR

22Rm � 1
� 1:

For small Rm, 2
2Rm � 1 � 2Rm ln 2, so this condition becomes

DNRnorm � 2 ln 2 � 1:4 dB:
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Figure 6. Error-correction coding and distortion-compensation (DC) gains. With common, memory-8 convolutional
codes one can obtain gains of about 5 dB over uncoded STDM. Distortion compensation yields about 1 dB additional
gain.

Since, as stated above, uncoded STDM with uniform, scalar quantization requires a DNRnorm of 15 dB for a bit-error
probability of 10�6, there is a gap to capacity of about 13.6 dB.

We now report the results of one experiment designed to investigate how much of this gap can be closed with
practical error correction codes and distortion compensation. In our experiment we embedded 107 bits in a pseudo-
random white Gaussian host using memory-8, rate-1/2 and rate-1/4, convolutional codes with maximal free distance.
The generators of these two codes in octal notation are (561; 753) and (463; 535; 733; 745), respectively.18 One coded
bit was embedded in each spread-transformed host signal component using uniform, scalar quantizers as described in
Sec. 3 and Fig. 2. We used the squared Euclidean distances between the channel output samples ~y and the nearest
reconstruction point from each of the two quantizers to calculate branch metrics for Viterbi decoding19 of the convo-
lutionally encoded data. Experimentally measured bit-error rate (BER) curves are plotted in Fig. 6. We observe an
error correction coding gain of about 5 dB at a BER of 10�6. Distortion compensation provides an additional 1-dB
gain.

From the de�nition of DNRnorm (16), we see a gain factor of g in DNRnorm translates directly into

1. a factor of g increase in rate for �xed levels of embedding-induced distortion and channel noise (robustness), or

2. a factor of g reduction in distortion for a �xed rate and robustness, or

3. a factor of g increase in robustness for a �xed rate and distortion.

Thus, the minimum DNRnorm required for a given bit-error rate is, indeed, the fundamental parameter of interest
and, as one can see from (15), in the Gaussian case the DNRnorm also completely determines the bit-error probability
for uncoded STDM for Rm � 1.

Other simulation results, including sample images, for both Gaussian channels and JPEG compression channels
are reported elsewhere.4,11

ACKNOWLEDGMENTS

This work has been supported in part by the Air Force O�ce of Scienti�c Research under Grant No. F49620-96-
1-0072, by the MIT Lincoln Laboratory Advanced Concepts Committee, and by a National Defense Science and
Engineering Graduate Fellowship.

c2000 SPIE. 58



[From Proc. of SPIE: Security and Watermarking of Multimedia Contents II, vol. 3971.]

REFERENCES

1. M. D. Swanson, M. Kobayashi, and A. H. Tew�k, \Multimedia data-embedding and watermarking technologies,"
Proc. of the IEEE 86, pp. 1064{1087, June 1998.

2. F. Hartung and M. Kutter, \Multimedia watermarking techniques," Proc. of the IEEE 87, pp. 1079{1107,
July 1999.

3. B. Chen and G. W. Wornell, \Quantization index modulation: A class of provably good methods for digital
watermarking and information embedding," submitted to IEEE Trans. on Information Theory, 1999.

4. B. Chen and G. W. Wornell, \Quantization index modulation methods for digital watermarking and infor-
mation embedding," to appear in Journ. of VLSI Signal Processing Systems for Signal, Image, and Video

Technology, 2000.

5. B. Chen and G. W. Wornell, \Dither modulation: A new approach to digital watermarking and information
embedding," in Proc. of SPIE: Security and Watermarking of Multimedia Contents, vol. 3657, pp. 342{353,
(San Jose, CA), Jan. 1999.

6. A. Z. Tirkel, G. A. Rankin, R. van Schyndel, W. J. Ho, N. R. A. Mee, and C. F. Osborne, \Electronic water
mark," in Proc. of Digital Image Computing, Technology and Applications, pp. 666{672, (Sydney, Australia),
Dec. 1993.

7. R. van Schyndel, A. Z. Tirkel, and C. F. Osborne, \A digital watermark," in Proc. of the IEEE International

Conference on Image Processing, vol. 2, pp. 86{90, (Austin, TX), Nov. 1994.

8. I. J. Cox, J. Killian, F. T. Leighton, and T. Shamoon, \Secure spread spectrum watermarking for multimedia,"
IEEE Trans. on Image Processing 6, pp. 1673{1687, Dec. 1997.

9. M. D. Swanson, B. Zhu, and A. H. Tew�k, \Data hiding for video-in-video," in Proc. of the 1997 IEEE Inter-

national Conference on Image Processing, vol. 2, pp. 676{679, (Piscataway, NJ), 1997.

10. I. J. Cox, M. L. Miller, and A. L. McKellips, \Watermarking as communications with side information," Proc.

of the IEEE 87, pp. 1127{1141, July 1999.

11. B. Chen and G. W. Wornell, \Provably robust digital watermarking," in Proc. of SPIE: Multimedia Systems

and Applications II, vol. 3845, pp. 43{54, (Boston, MA), Sept. 1999.

12. S. I. Gel'fand and M. S. Pinsker, \Coding for channel with random parameters," Problems of Control and

Information Theory 9(1), pp. 19{31, 1980.

13. T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, Inc., 1991.

14. P. Moulin and J. A. O'Sullivan, \Information-theoretic analysis of information hiding," Preprint, 1999.

15. M. H. M. Costa, \Writing on dirty paper," IEEE Trans. on Information Theory 29, pp. 439{441, May 1983.

16. J. R. Smith and B. O. Comiskey, \Modulation and information hiding in images," in Information Hiding. First

International Workshop Proceedings, pp. 207{226, June 1996.

17. A. Lapidoth, \Nearest neighbor decoding for additive non-Gaussian noise channels," IEEE Trans. on Information

Theory 42, pp. 1520{1529, Sept. 1996.

18. S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, Englewood
Cli�s, NJ, 1983.

19. E. A. Lee and D. G. Messerschmitt, Digital Communication, Kluwer Academic Publishers, second ed., 1994.

c2000 SPIE. 59


